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Abstract

The identification of multivariable state space models in innovation form is solved in a subspace identification framework using
convex nuclear norm optimization. The convex optimization approach allows to include constraints on the unknown matrices
in the data-equation characterizing subspace identification methods, such as the lower triangular block-Toeplitz of weighting
matrices constructed from the Markov parameters of the unknown observer. The classical use of instrumental variables to
remove the influence of the innovation term on the data equation in subspace identification is avoided. The avoidance of the
instrumental variable projection step has the potential to improve the accuracy of the estimated model predictions, especially
for short data length sequences.
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1 Introduction

Subspace IDentification (SID) methods for the identifi-
cation of Linear Time-Invariant (LTI) state space models
as developed originally in [20, 10, 21] derive approximate
models rather than models that are “optimal” with re-
spect to a goodness of fit criterion defined in terms of the
weighted norm of the difference between the measured
output and the model predicted output. The approxi-
mation is based on linear algebra transformations and
factorizations of structured Hankel matrices constructed
from the input-output data that are related via the so-
called data equation [24]. All existing SID methods aim
to derive a low rank matrix from which key subspaces,
hence the name subspace identification, are derived [28].

⋆ Part of the research was done while the first author was
a Visiting Professor at the Division of Automatic Control,
Department of Electrical Engineering, Linköping University,
Sweden. This work was partially supported by the European
Research Council Advanced Grant Agreement No. 339681.
A preliminary version of the paper was presented at the 19th
IFAC World Congress in South Africa, 2014. Corresponding
Author.
m.verhaegen@tudelft.nl.

The low rank approximation is in general done using a
Singular Value Decomposition (SVD).

A number of recent developments have been made to
integrate the low rank approximation step in SID with
a goodness of fit into a single multi-criteria convex op-
timization problem. These contributions were inspired
by the work in [3] to approximate a constraint on the
rank of a matrix by minimizing its nuclear norm. It re-
sulted into a number of improvements to the low rank
approximation step over the classically used SVD in SID,
[12, 13, 16, 5, 7, 11, 18, 19].

When considering identifying innovation state space
models, a common approach is to make use of instru-
mental variables [7] . It is well known that the projection
operation related to the use of instrumental variables
may result into a degradation of the accuracy of the
estimated quantities.

In this paper we present a new SID method for identify-
ing multivariable state space models in innovation form
within the framework of nuclear norm optimization. The
new SID method avoids the use of instrumental vari-
ables. The method is a convex relaxation of Pareto opti-
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mization in which structural constraints are imposed on
the unknowns in the data equation, such as their block-
Toeplitz matrix structure. This Pareto optimization ap-
proach allows to make a trade-off between a Prediction
Error type of optimality criteria, that is minimizing the
(co-)variance of the one-step ahead prediction of a linear
Kalman filter type observer, on one hand, and finding an
observer of lowest complexity, i.e. of lowest model order,
on the other hand. The key result is that the structural
Toeplitz constraint is sufficient to find the minimal ob-
server realization when the optimal one-step ahead pre-
diction of the output is known. The incentive to estimate
a Kalman filter type of observer also justifies the con-
straint to attempt to minimize the variance of the one-
step ahead prediction error.

It is interesting to note that this key result stipulates
precise conditions on the persistancy of excitation of the
input (in open-loop experiments). For many instrumen-
tal variable based SID methods it is still an open ques-
tion what the persistency of excitation condition is on
a generic input sequence to guarantee the algorithm to
work for finite data length samples or to be consistent
[9].

The convex relaxation of the new SID approach is
denoted by Nuclear Norm Subspace IDentification
(N2SID). The foundations for N2SID were presented
in [22]. There the resulting optimization problem was
solved using a Semi-Definite Programming (SDP) solver
after a reformulation of the problem into an equivalent
SDP problem. In addition to this the problem formu-
lation was approximated in order to obtain a problem
of manageable size for current SDP solvers. To speed
up the calculations or to be able to treat longer data
sequences, a new implementation in the ADMM frame-
work has been developed. Due to the restriction of this
paper, we refer the reader to [23] for a description of this
new implementation. In [23] the interested reader can
also find experimental results from a comparison study
of N2SID with two other SID methods, N4SID and the
recent Nuclear Norm based SID method presented in
[11] and with PEM. This comparison study makes use
of real-life data batches of the DaSIy library [2].

The paper is organized as follows. In Section 2 the iden-
tification problem for identifying a multi-variable state
space model in a subspace context while taking a predic-
tion error cost function into consideration is presented.
The data equation and preliminaries on the assumptions
made in the analysis and description of the subspace
identification method are presented in Section 3. The
multi-criteria optimization problem, the analysis of the
uniqueness of solution and its convex relaxation are pre-
sented in Section 4. Finally, we end this paper with some
concluding remarks.

1.1 Notations

We introduce the Matlab-like notation that for a vector
or matrixX ∈ R

M×N
(

C
M×N

)

it holds thatX(m : n, p :
q) is the sub-matrix of X with rows m through n and
columns p through q.

2 The Subspace Identification Problem

In system identification a challenging problem is to iden-
tify Linear Time Invariant (LTI) systems with multi-
ple inputs and multiple outputs using short length data
sequences. Taking process and measurement noise into
consideration, a general state space model for LTI sys-
tems can be given in so-called innovation form, [24]:

{

x(k + 1) = Ax(k) +Bu(k) +Ke(k)

y(k) = Cx(k) +Du(k) + e(k)
(1)

with x(k) ∈ R
n, y(k) ∈ R

p, u(k) ∈ R
m and e(k) a zero-

mean white noise sequence. Since we are interested in
short data sets no requirement on consistency is included
in the following problem formulation.

Problem Formulation: Given the input-ouput (i/o) data
batches {u(k), y(k)}Nk=1, with N > n and assumed to be
retrieved from an identification experiment with a sys-
tem belonging to the class of LTI systems as represented
by (1), the problem is to determine approximate system

matrices (ÂT , B̂T , ĈT , D̂, K̂T ) that define the n̂-th order
observer of “low” complexity:







x̂T (k + 1) = ÂT x̂T (k) + B̂Tuv(k) + K̂T

(

yv(k)− ĈT x̂T

)

ŷv(k) = ĈT x̂T (k) + D̂uv(k)

(2)
such that the approximated output ŷv(k) is “close”
to the measured output yv(k) of the validation pair

{uv(k), yv(k)}
Nv

k=1 as expressed by a small value of the
cost function,

1

Nv

Nv
∑

k=1

‖yv(k)− ŷv(k)‖
2
2. (3)

The quantitative notions like “low” and “close approxi-
mation” will be made more precise later on. The solution
to this problem is provided under two assumptions. The
first is listed here, the second at the end of Section 3.

Assumption A.1. The pair (A,C) is observable and

the pair (A,
[

B K

]

) is reachable.

A key starting point in the formulation of subspace meth-
ods is the relation between structured Hankel matrices
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constructed from the i/o data. This relationship will as
defined in [24] be called the data equation. It will be
presented in the next section.

3 The Data Equation, its structure and Prelim-
inaries

Let the LTI model (1) be represented in its so-called
observer form:

{

x(k + 1) = (A−KC)x(k) + (B −KD)u(k) +Ky(k)

y(k) = Cx(k) +Du(k) + e(k)

(4)
We will denote this model compactly as:

{

x(k + 1) = Ax(k) + Bu(k) +Ky(k)

y(k) = Cx(k) +Du(k) + e(k)
(5)

with A the observer system matrix (A − KC) and B
equal to (B − KD). Though this property will not be
used in the sequel, the matrix A can be assumed to be
asymptotically stable.

For the construction of the data equation, we store the
measured i/o data in block-Hankel matrices. For fixed
N assumed to be larger then the order n of the under-
lying system, the definition of the number of block-rows
fully defines the size of these Hankel matrices. Let this
dimensioning parameter be denoted by s, then the Han-
kel matrix of the input is defined as:

Us,N =

















u(1) u(2) · · · u(N − s+ 1)

u(2) u(3)
...

...
. . .

u(s) u(s+ 1) · · · u(N)

















. (6)

The Hankel matrices from the output y(k) and the in-
novation e(k) are defined similarly and denoted by Ys,N

and Es,N , respectively. The relationship between these
Hankel matrices, that readily follows from the linear
model equations in (5), require the definition of the fol-
lowing structured matrices. First we define the extended
observability matrix Os:

OT
s =

[

CT ATCT · · · AT s−1
CT

]

. (7)

Second, we define a Toeplitz matrix from the quadruple

of systems matrices {A,B, C,D} as:

Tu,s =















D 0 · · · 0

CB D 0
...

. . .

CAs−2B · · · D















(8)

and in the same way we define a Toeplitz matrix Ty,s

from the quadruple {A,K,C, 0}. Finally, let the state
sequence be stored as:

XN =
[

x(1) x(2) · · · x(N − s+ 1)
]

. (9)

Then the data equation compactly reads:

Ys,N = OsXN + Tu,sUs,N + Ty,sYs,N + Es,N . (10)

This equation is a simple linear matrix equation that
highlights the challenges in subspace identification,
which is to approximate from the given Hankel matrices
Ys,N and Us,N the column space of the observability ma-
trix and/or that of the state sequence of the observer (5).

The equation is highly structured. In this paper we fo-
cus on the following key structural properties of the un-
known matrices in (10):

(1) The matrix product OsXN is low rank when s > n.
(2) The matrices Tu,s and Ty,s are block-Toeplitz.
(3) The matrix Es,N is block-Hankel.

The interesting observation is that these three structural
properties can all be considered in the multi-criteria op-
timization problem while preserving convexity. This is
demonstrated in Section 4.

The analysis in Section 4 requires the following prelimi-
naries.

Definition 1 [24]: A signal u(k) ∈ R
m is persistently

exciting of order s if and only if there exists an integer
N such that the matrix Us,N has full row rank.

Lemma 2 [9]: Consider the state space model in inno-
vation form (1) and let all stochastic signals be station-
ary and ergodic, let Assumption A.1 be satisfied and let
the input u(k) be quasi-stationary [15] and persistently
exciting of order s+ n, then:

lim
N→∞

1

N

[

XN

Us,N

]

[

XT
N UT

s,N

]

> 0
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Corollary 3 Let the conditions stipulated in Lemma 2
hold, and let u(k) be statistically independent from the
innovation sequence e(ℓ) for all k, ℓ, then,

lim
N→∞

1

N









XN

Us,N

Ys,N









[

XT
N UT

s,N Y T
s,N

]

> 0

Proof: Since e(k) is white noise, it follows that
E[x(k)e(ℓ)T ] = 0 (with E denoting the expectation
operator), for ℓ ≥ k. This in combination with the inde-
pendency between u(k) and e(ℓ), the white noise prop-
erty of e(k) and the ergodicity or the quasi-stationarity
of the signals yields,

lim
N→∞

1

N









XN

Us,N

Es,N









[

XT
N UT

s,N ET
s,N

]

> 0 (11)

Consider model (1) and let the block-Toeplitz matrices
T ′
u,s and Te,s be defined as the Toeplitz matrix Tu,s in (8)

but from the quadruples (A,B,C,D) and (A,K,C, I),

respectively. Let OT
s =

[

CT ATCT · · · AT s−1
CT

]

.

Then we can state the following alternative data equa-
tion:

Ys,N = OsXN + T ′
u,sUs,N + Te,sEs,N

By this data equation, we have that,









XN

Us,N

Ys,N









=









I 0 0

0 I 0

Os T ′
u,s Te,s

















XN

Us,N

Es,N









The results follows from (11) and the fact that the matrix
Te,s is square and invertible. ✷

Based on this result the following assumption is stipu-
lated.

Assumption A.2. Consider the model (5), then there
exists an integer N such that the compound matrix,









XN

Us,N

Ys,N









has full row rank.

4 N2SID

4.1 Pareto optimal Subspace Identification

When assuming the optimal observer given, the quantity
ŷ(k) is the minimum variance prediction of the output

and equal to y(k)− e(k). Let the Hankel matrix Ŷs,N be
defined from this sequence ŷ(k) as we defined Ys,N from
y(k). Then the data equation (10) can be reformulated
into:

Ŷs,N = OsXN + Tu,sUs,N + Ty,sYs,N . (12)

Let Tp,m denote the class of lower triangular block-
Toeplitz matrices with block entries p×m matrices and
let Hp denote the class of block-Hankel matrices with
block entries of p column vectors. Then the three key
structural properties listed in Section 3 are taken into
account in an optimization problem seeking a trade-off
between the following cost functions,

rank
(

Γs,N −ΘuUs,N −ΘyYs,N

)

and TrE

[

(

y(k)− γ(k)
)(

y(k)− γ(k)
)T

]

(13)

Here E denotes the expectation operator. The optimiza-
tion variables in the cost function are Γs,N with entries
γ(k) and Θu,Θy. The matrix Γs,N ∈ Hp is the (block-

) Hankel matrix approximating the Hankel matrix Ŷs,N

and constructed from the approximation of the one-step
ahead prediction of the output denoted by γ(k) in the

same way Ŷs,N was constructed from ŷ(k). Further, we
have the following constraints on the matricesΘu ∈ Tp,m
and Θy ∈ Tp,p.

An optimal trade-off between the above two cost func-
tions is called a Pareto optimal solution. Moreover, the
Pareto optimization problem is not tractable. For that
purpose we will develop in the next subsection a convex
relaxation of the cost functions.

Before stating this convex relaxation an analysis is made
on additional constraints that can be imposed on the
block-Toeplitz matrices Θu and Θy and/or under what
conditions their block-Toeplitz structure is sufficient to
find a unique solution.

4.2 Additional structure in the block-Toeplitz matrices
Tu,s and Ty,.s

In this section we analyse the additional structure
present in the block-Toeplitz matrices Tu,s and Ty,.s as
well as the conditions under which the block-Toeplitz
structure is sufficient to find the system matrices
(AT ,BT , CT , D,KT ). These conditions are summarized
in Theorem 1 of this paper. First, we state in Lemma 4,
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the additional structure in the block-Toeplitz matrices
Tu,s and Ty,.s.

Lemma 4 Let s > n. Then we can partition the block-
Toeplitz matrices Tu,s and Ty,.s, defined in the data equa-
tion (10) as,

Tu,s =





Tu,n | 0

Hu,s−n | Tu,s−n



 (14)

and likewise for the matrix Ty,s. Here the matrices
Hu,s−n and Hy,s−n can be decomposed as,

[ Hu,s−n | Hy,s−n ] =









C

CA

.

.

.

CAs−n−1









[ An−1B · · · B | An−1K · · · K ]

(15)

Proof: Follows by construction. ✷

Remark 5 Lemma 4 can be used to impose an additional
constraint on the block-Toeplitz matrices Θu and Θy. If
we partition these block-Toeplitz matrices conformal their
counterparts Tu,s and Ty,s as highlighted in Lemma 4, as
follows,

Θu,s =





Θu,n | 0

HΘ
u,s−n | Θu,s−n





(likewise for Θy,s), then for the case s ≥ 2n we can
impose the following additional constraint,

rank
( [

HΘ
u,s−n HΘ

y,s−n

] )

= n

The additional constraint highlighted in Remark 5 can
be reformulated, as done e.g. in [18, 19], as a rank mini-
mization constraint, that can be relaxed to a convex con-
straint using the nuclear norm. However we seek to avoid
imposing this additional constraint in order to minimize
the number of regularization parameters. The basis here-
fore is provided in the next theorem.

Theorem 1 Consider the observer in (1) with x(k) ∈
R

n and consider the rank optimization problem in Eq.
(13) only with Γs,N fixed to Ŷs,N , let s > n and let As-
sumptions A.1 and A.2 be satisfied, Then,

min
Θu∈Tp,m,Θy∈Tp,p

rank
(

Ŷs,N −ΘuUs,N −ΘyYs,N

)

= n

Further the arguments optimizing the above optimization
problem, denoted as Θ̂u, Θ̂y are unique and equal to,

Θ̂u = Tu,s Θ̂y = Ty,s

with Tu,s, Ty,s the true underlying block-Toeplitz matrices
in the data equation(10).

Proof: Let δu ∈ Tp,m, δy ∈ Tp,p, then,

Ŷs,N −ΘuUs,N −ΘyYs,N = Ŷs,N − (Tu,s + δu)Us,N −

(Ty,s + δy)Ys,N

=OsXN − δuUs,N − δyYs,N

Therefore,

rank
(

Ŷs,N −ΘuUs,N −ΘyYs,N

)

=

rank
(

OsXN − δuUs,N − δyYs,N

)

Application of Sylvester’s inequality [24] and under As-
sumption A.2, we further have,

rank
(

Ŷs,N −ΘuUs,N −ΘyYs,N

)

= rank
( [

Os δu δy

] )

(16)
First notice that under Assumption A.1 the rank of
this matrix is n for δu = 0 and δy = 0. Since the

rank
( [

Os δu δy

] )

≥ rank
(

Os

)

for all δu, δy, we have

that n is the minimal value of the rank in (16).

It will now be shown that this minimal value of the rank,
can only be reached for both δu and δy equal to zero.

For that purpose, let t = {ti ∈ R
p×(m+p)}si=1 be a se-

quence of arbitrary matrices that define the lower trian-
gular block-Toeplitz matrix ∆s(t) as:

∆s(t) =

















t1 0 · · · 0

t2 t1
...

...
. . .

...

ts ts−1 · · · t1

















∈ R
sp×s(m+p)

The columns of the compound matrix
[

δu δy

]

in (16)

can always be permuted into a matrix of the form ∆s(t)
and since column permutations do not change the rank
of a matrix we have that,

rank
( [

Os δu δy

] )

= rank
( [

Os ∆s(t)
] )

Now we show that the following condition

rank
( [

Os ∆s(t)
] )

= n

implies that ∆s(t) has to be zero. In order for the above
rank constraint to hold we need ∆s(t) to be of the fol-
lowing form:
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t1 0 · · · 0 0

t2 t1 0 0

...
. . .

ts ts−1 · · · t2 t1

















= Os

[

q1 q2 · · · qs−1 qs

]

(17)

The fact that s > n, we have that rank
(

Os−1

)

= n and

therefore we can deduce from the first p(s − 1) rows of
the last p+m columns in the expression (17) that,

qs = 0 ⇒ t1 = 0

Using this result, and the Toeplitz structure of ∆s(t), we
can in the same way conclude from the first p(s−1) rows
and from the columns (s−2)(m+p)+1 to (s−1)(m+p)
in (17) that,

qs−1 = 0 ⇒ t2 = 0 etc.

Hence there cannot be a ∆s(t) with the given Toeplitz
structure that is different from zero such that

rank
( [

Os ∆s(t)
] )

= n. Hence the minimal value of the

rank of the matrix
[

Os δu δy

]

in (16) w.r.t. δu, δy yields

zero value of both. This concludes the proof. ✷

4.3 A convex relaxation

A convex relaxation of the NP hard problem formulation
in (13) will now be developed. The original problem is
reformulated in two ways. First, the rank operator is
substituted by the nuclear norm. The nuclear norm of
a matrix X denoted by ‖X‖⋆ is defined as the sum of
the singular values of the matrix X. It is also known as
the trace norm, the Ky Fan norm or the Schatten norm,
[14]. This is known to be a good approximation of the
rank operator when it is to be minimized, [4, 3]. Second,
the minimum variance criterion is substituted by the

following sample average 1
N

∑N

k=1 ‖y(k)− γ(k)‖22.
By introducing a scalarization parameter λ ∈ [0,∞),
which can be interpreted as a regularization parameter,
all Pareto optimal solutions of the convex reformulation
of the N2SID problem can be obtained by solving:

minΓs,N ∈ Hp,Θu,s ∈ Tp,m,Θy,s ∈ Tp,p ‖Γs,N −Θu,sUs,N −Θy,sYs,N‖⋆

+ λ
N

∑N

k=1
‖y(k)− γ(k)‖22

.

(18)
for all values of λ ∈ [0,∞).

Remark 4 The method can be extended to other related
identification problems. As a first example we consider
the identification problem of an innovation model with
absence of a measurable input, is to consider the following
convex relaxed problem formulation:

minΓs,N∈Hp,Θy,s∈Tp,p
‖Γs,N −Θy,sYs,N‖⋆+

λ
N

∑N

k=1 ‖y(k)− γ(k)‖22.
(19)

A second example is the case of the Kalman gain K in
(1) to be zero. In that case the parameter (matrix) Θy in
(13) is simply set to zero. Such a constraint, if valid, will
again improve the results.

It is well-known that the problem (18) can be recast as a
Semi-Definite Programming (SDP) problem, [4, 3], and
hence it can be solved in polynomial time with standard
SDP solvers. The reformulation, however, introduces ad-
ditional matrix variables of dimension N×N . Therefore
limiting the size of problems possible to solve when us-
ing current SDP solvers [22]. In [23] an alternative exact
method using ADMM is presented that was inspired by
its successful application in [11].

4.4 Calculation of the system matrices

The convex-optimization problem (18) yields the esti-
mates of the quantities Γs,N ,Θu,s and Θy,s. Since the
outcome depends on the regularization parameter λ,
let us denote these estimates as Γ̂s,N (λ), Θ̂u,s(λ) and

Θ̂y,s(λ) respectively. The determination of the system
matrices starts with an SVD of the “low rank” approxi-
mated matrix as follows:

Γ̂s,N (λ)− Θ̂u,s(λ)Us,N − Θ̂y,s(λ)Ys,N =

[

Un̂(λ) | ⋆
]





Σn̂(λ) | 0

0 | ⋆









V T
n̂ (λ)

⋆



 (20)

where n̂ is an integer denoting the n̂ largest singular
values and the notation ⋆ denotes a compatible matrix
not of interest here. The selection of n̂ is outlined in the
algorithmic description given next.

The algorithm requires in addition to the input-output
data sequences the user to specify the parameter s to fix
the number of block rows in the block-Hankel matrices
Us,N and Ys,N and an interval for the parameter λ de-
noted by Λ = [λmin, λmax]. As for the implementation
described in [11] the identification data set could be par-
titioned in two parts to avoid overfitting. The first part
is referred to as the ide-1 part of the identification data
set and the remaining part of the identification data set
is referred to as the ide-2 part. This splitting of the data
set was recommended in [11] to avoid overfitting.

The N2SID algorithm is summarized as follows. We start
with gridding the interval Λ = [λmin, λmax] into L dif-
ferent points, e.g. using the Matlab

notation Λ = logspace

(

log(λmin), log(λmax), L
)

. The

set Λ is defined by Λ = {λi}
L
i=1.

For each λi ∈ Λ we do the following (leaving out for the
sake of brevity the dependency of the estimated system
matrices on this parameter λi):

6



(1) Order Selection: Solve (18) using the data set ide-1
and compute the SVD as in (20). Based on the singular
values of this SVD the model order n̂ is selected. This
can be done manually by the user or automatically.
Such automatic selection can be done as in the N4SID
implementation in [15] as highlighted in [11]: order the
singular values in (20) in descending order, then select
that index of the singular value that in logarithm is
closest to the logarithmic mean of the maximum and
minimum singular values in (20).

(2) Computing the pair (ÂT , ĈT ): From the SVD in
(20), and the selected model order n̂, the pair is de-
rived from the matrix Un̂(λi) as done in classical SID
methods by considering Un̂(λi) to be an approxima-
tion of the extended observability matrix Os, see e.g.
[24].

(3) Computing the Kalman gain K̂T : With Un̂(λi) and

the estimated matrix Θ̂y,s(λi) we exploit that the lat-
ter matrix approximates the block-Toeplitz matrix
Ty,s to estimate the observer gain via the solution of a
standard linear least squares problem. This is seen as
follows. Let us assume the block Toeplitz matrix Ty,s

be given and denoted explicitly as,

Ty,s =





















0 0 · · · 0 0

CK 0 0 0

CAK CK 0 0
...

. . .

CAs−2K · · · CK 0





















If we know the matrix Os, we can write the following
set of equations,

Os(1 : (s− 1)p, :)K = Ty,s(p+ 1 : ps, 1 : p)

Let us now denote the first (s−1)p rows of the matrix

Un̂(λi) by Ôs−1,T and let us denote the submatrix of

the matrix Θ̂y,s(λi) from rows p + 1 to row ps and

from column 1 to p by T̂y,s(p + 1 : ps, 1 : p), then we
can estimate KT from:

min
KT

‖Ôs−1,TKT − T̂y,s(p+ 1 : ps, 1 : p)‖2 (21)

The estimate of the observer gain is used to estimate
the system matrix AT as:

ÂT = ÂT + K̂T ĈT (22)

(4) Computing the pair (B̂T , D̂) and the initial condi-
tions: Let the approximation of the observer be de-
noted as:

x̂T (k + 1) = ÂT x̂T (k) + B̂Tu(k) + K̂T y(k)

ŷ(k) = ĈT x̂T (k) + D̂u(k) (23)

Then the estimation of the pair B̂T , D̂ and the initial
conditions of the above observer can again be done
via a linear least squares problem as outlined in [24]
by minimizing the RMS value of the prediction error
y(k) − ŷ(k) obtained from the identification data in

ide-1. The estimated input matrix B̂T is then deter-
mined as:

B̂T = B̂T + K̂TD (24)

(5) Evaluating Goodness of fit: Using the computed

quadruple of system matrices {ÂT , B̂T , ĈT , D̂} and
the validation data in ide-2 of length Nide−2 we
calculate the simulated output ŷ(k, λi) as,

x̂T (k + 1) = ÂT x̂T (k) + B̂Tu(k)

ŷ(k, λi) = ĈT x̂T (k) + D̂u(k) (25)

and evaluate the cost function J(λi) =
∑Nide−2

k=1 ‖y(k)−
ŷ(k, λi)‖

2
2.

The selected output of the N2SID algorithms is that
model that corresponds to the optimal λopt given as:

λopt = min
λ∈Λ

J(λ)

It should be remarked that other variants to compute
the system matrices are possible as is done for classical
subspace identification methods. For the sake of brevity
we refer the interested reader to [23]. Here the inter-
ested reader can also find an efficient implementation
in the ADMM framework and a more elaborate valida-
tion study comparing the new N2SID method with other
existing subspace identification methods as well as the
Prediction Error method.

5 Concluding Remarks

Subspace identification of multivariable state space in-
novation models is revisited in this paper in the scope of
nuclear norm optimization methods and using the ob-
server form. A new subspace identification method is
presented, referred to as N2SID. N2SID is the first sub-
space identification method that addresses the identifi-
cation of innovation state space models without the use
of instrumental variables (IVs). The avoidance of using
IVs leads to a number of improvements. First as shown
in the experimental study in [23], it leads to improved re-
sults in identifying innovation models when compared to
existing SID methods, like N4SID and the recent Nuclear
Norm based SID methods presented in [11] and with the
Prediction Error Method (PEM) [15]. This improvement
especially holds for small length data batches, i.e. when
the number of samples is only a small multiple of the or-
der of the underlying system. Second, as illustrated by
Theorem 1, the methodology presented enables to pro-
vide insight on the necessary conditions of persistency of
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excitation of the input on the existance of a unique so-
lution. Finally, the new N2SID methodology will enable
to address other interesting identification problems in a
subspace identification framework, such as the identifi-
cation of distributed systems as shown in [25, 26, 27].
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